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for every subgame. For example, we have already seen that the strategy com­
bination (all {b2, b1}) is a Nash equilibrium for the complete game, and it is 
also a subgame-perfect Nash equilibrium. Player B's strategy {b21 b1} speci­
fies that he chooses b2 at the B1 node and b1 at the B2 node, and he has no 
incentive to deviate from these choices. Thus, the strategy combination (all 
{b2, b1}) involves rational behavior at every node of the game. In contrast, the 
strategy combination (a2, {b11 b1}) is not a subgame-perfect Nash equilibrium 
since it specifies that at the subgame beginning at the B1 node, Player B 
chooses b11 and this is not a Nash equilibrium for that subgame. 

The attentive reader may ask at this point: With the Nash equilibrium (a2, 

{b1, b1}), who cares what Player B chooses at the B1 node if Player A is choos­
ing a2 as his equilibrium strategy? What happens at a subgame, however, 
even if that subgame is never reached during the course of play, can deter­
mine the final outcome of a game. With the Nash equilibrium (a2; {b11 b1}), 

let's carefully examine why Player A has no incentive to deviate from a2• If 
Player A decides to choose a11 given Player B' s strategy of {b11 b1}, A expects to 
end up with a payoff of 0. Therefore, A prefers to choose a2 and end up with 
a payoff of 2. But why should Player A believe that B will stick to his equi- _ 
librium strategy? Player A knows that if he were to choose a1, the game would 
be at the B1 node and Player B would rationally choose b2. The important 
point here is that B' s strategy {b1, b1} is not credible; that is, the only way the 
Nash equilibrium (a2, {b11 b1}) can be maintained is if Player A believes that 
B will choose b1 if the game progresses to the B1 node. A subgame-perfect 
Nash equilibrium, such as (a1, {b2, b1}), does not require that any incredible 
threat be believed. In the final section of this chapter, we will examine an eco­
nomic application of the importance of making threats credible. 

9.5 ENTRY DETERRENCE 

Let us once again return to the Coke/Pepsi advertising example, but now 
we tell a different story. Assume that Coke is a monopolist in a market, and 



Chapter 9 Game Theory 287 

Pepsi is deciding whether or not to enter the market. In this case, we refer 
to Coke as the incumbent, and to Pepsi as the entrant. Figure 9-15 presents 
the extensive form of this entry deterrence game. At the initial node P1, Pepsi 
has two actions to choose from-stay out of the market or enter the market 
at an entry cost of 10. If Pepsi stays out, it earns zero profit and Coke, the 
incumbent, earns monopoly profit equal to 100. If Pepsi enters the market 
we are at the C1 node, and we assume that Coke can then choose between 
two actions-collude with Pepsi and share the monopoly profit, or fight 
Pepsi by undertaking a malicious advertising campaign at a cost of k = 25. 
If Coke decides to collude with Pepsi, Coke's payoff is 50 and Pepsi's pay­
off is 50 minus the entry fee, that is, 40. If Coke decides to fight Pepsi, Coke's 
payoff is 70 - k and Pepsi's payoff is -10 (that is, Pepsi loses the entry fee). 

In this game, can Coke deter Pepsi from entering the market? If Coke's 
strategy is to fight Pepsi upon entry, Pepsi will not enter, since it prefers a 
profit of 0 to a profit of -10. Thus, the strategy combination (Stay Out, Fight) 
is a Nash equilibrium.6 But is Coke's threat credible? Using backward indue-

Figure 9-15 Entry Deterrence Game 
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6 When Pepsi's strategy is Stay Out, Coke does not get to move in this game; therefore, Coke 
is indifferent between its two actions. 
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tion and starting at the C1 node, Coke would prefer to collude with Pepsi, 
since 50> 70 - k = 45. Moving up to the P1 node, if Pepsi chooses to stay 
out its profit will be 0, but if it enters it will earn a profit of 40, since it is not 
in Coke's best interest to fight if the C1 node is reached. In this version of the 
game, then, Coke can threaten to fight Pepsi, but the threat is not credible, 
since the outcome (Stay Out, Fight) is not subgame perfect. The outcome (En-

[ t
ter, Collude), however, is a subgame-perfect Nash equilibrium. Intuitively, 
when an incumbent threatens an entrant prior to entry, but the threat will only 
be carried out after entry, the threat must be credible or it will be ignored. 

Can we modify the game in a way that allows Coke to deter entry? Con-
sider a second version of the entry deterrence game shown in Figure 9-16. 
In this case, we assume that k is made up of two parts: the cost of making 
. the commercial, c, and the cost of purchasing the advertising space, v, (that 
is, k = c + v). This game has three stages. First, Coke must decide whether 
or not to make the commercial, so that if Pepsi enters and Coke decides to 
fight, Coke only needs to incur the cost of purchasing the advertising space. 

Figure 9-16 
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After Coke's initial action, Pepsi must decide whether or not to enter the in­
dustry. In the final stage, as in the previous version of the game, Coke must 
decide whether to collude with Pepsi or to fight Pepsi. If you look closely 
at the terminal nodes, you will see that the subgame beginning at the P1 

node is exactly the game shown in Figure 9-15 (except the order of the pay­
offs are reversed, since Coke now moves first). The subgame beginning at 
the P2 node is similar to the subgame beginning at the P1 node, except for a 
slight adjustment to Coke's payoffs. Since Coke incurs the cost of" making 
the commercial up front, its payoff if Pepsi does not enter is 100 - 'c, and if 
Pepsi does enter Coke's payoffs are 50 - c if it colludes, and 70 - c - v if 
it fights. Notice that 70 - k = 70 - c - v; that is, if Coke ends up fighting 
Pepsi, its total cost of fighting is the same whether or not it incurred the cost 
cup front. 

The backward induction outcome of this game depends on the values 
of c and v. We will still assume that k = 25, but it is now made up of c = 10 
and v = 15. Let's work through the subgames to find the equilibrium out­
come. From the earlier version of the game, we know that if the game pro­
gresses to the P1 node, Pepsi will enter and Coke will collude. Thus, if Coke 
chooses not to incur cup front, its final payoff will be 50. To find Coke's 
final payoff if it decides to incur c, we can begin at the C2 node. If Coke 
colludes at that node, its payoff is 50 - c = 40; if it fights, its payoff is 
70 - 25 = 45. Therefore, Cokes decides to fight if Pepsi chooses to enter at 
the P 2 node, but Pepsi will not enter, because it prefers the payoff of 0 to the 
payoff of -10. If Pepsi doesn't enter, Coke's payoff from incurring cup front 
will be 100 - 10 = 90, which is greater than its payoff of 50 if it doesn't in­
cur c. In all, the backward induction outcome is for Coke to incur c and for 
Pepsi to stay out of the market. · 

Why is the outcome of the second version of the game different from 
the outcome of the first version? In the first version, Coke can carry out its 
threat only after Pepsi enters the market, but by then it is too late-Coke's 
bluff will be called! In the second version of the game, Coke precommits; that 
is, Coke incurs enough of a cost up front to prove to Pepsi that it will cred­
ibly incur the rest of the cost if the game reaches the C2 node. Even though 
the commercial ends up being wasted (since Coke will never purchase the 
advertising space), the small cost up front affects Coke's future payoffs in a 
way that makes fighting a credible threat. 

Summary 

• Game theory is the study of behavior in situations in which each party's 
payoff directly depends on what another party does. 




